Hydrological Characterization of the Nelson Tunnel Mine Drainage Creede, Colorado

Rory Cowie, Mark Williams
Mike Wireman, Jeff Graves
Partners

U S EPA Region 8

Colorado Department of Public Health and the Environment

Division of Reclamation, Mining and Safety

University of Colorado

Craig Byington, Millenium GeoScience

Rio Grande Silver. Hecla

Willow Creek Reclamation Committee

Local citizens
• Zinc loads 169-375 Lbs/Day
• Up to 75% load W. Willow
• Cadmium up to 50% of load
Dueling Conceptual Model

The source of water producing the mine discharge is....

• Predominantly new water from snowmelt and summer precipitation

• Predominantly older regional groundwater flow

• Accurate characterization will impact remediation options!
Outline

• Geological characterization
• Mine complex characterization
• Hydrologic characterization
• Hydrogeologic conceptual model
• How can we use this information?
From Byington, 2012
Commodore Tunnel following Amethyst fault
2009-2010
Surface water sampling sites

- Equity Mine
- Emerald Ranch
- Emerald Ranch Spring
- Midwest Spring
- Weaver Spring
- Nelson Portal
2012-2013
Surface water sampling sites
Vertical view of Commodore Mine
Nelson Tunnel Sample Sites

Sample Site w/ # of samples collected

MINE POOLS:
A. Nelson Portal Blockage
B. Nelson Portal Pool
C. Bachelor Blockage
D. Lower Mine Pool
E. Noname Blockage
F. Upper Mine Pool
Hydrologic Characterization

• Stable water isotopes (δ^{18}O/δD)

• Radioactive water isotopes (3H – Tritium)

• Radiocarbon dating (14C of DIC and DOC)

• Strontium isotopes (86Sr/87Sr)

• Metals and solute chemistry
Creede dD v. d18O: Kiowa Lab Samples

- Rain
- Snow
- Mine Water
- Spring Water
- Surface Water
- Well Water

D (per mil)

-20 -15 -10 -5 0

D18O (per mil)
Tritium Values of Nelson Tunnel Sample Sites

Sample size in parentheses
<table>
<thead>
<tr>
<th>Depth</th>
<th>% modern water</th>
<th>Water age years</th>
</tr>
</thead>
<tbody>
<tr>
<td>-65</td>
<td>13.25</td>
<td>16,250</td>
</tr>
<tr>
<td>-60</td>
<td>13.5</td>
<td>16,100</td>
</tr>
<tr>
<td>-40</td>
<td>13.92</td>
<td>15,850</td>
</tr>
</tbody>
</table>

Radiocarbon ages from DIC of mine waters:

<table>
<thead>
<tr>
<th>% modern water</th>
<th>Water Age years</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.41</td>
<td>10,100</td>
</tr>
<tr>
<td>33.3</td>
<td>8,830</td>
</tr>
<tr>
<td>19.86</td>
<td>13,000</td>
</tr>
</tbody>
</table>
HYDROGEOLOGIC CONCEPTUAL MODEL

Recharge occurs in higher elevations – infiltration of snow melt

GW entering workings is old – based on tritium & 14C

Temperatures of water in NT is 18-20°C

Flowpaths – deep? slow? geology?

Dense extension fractures / faults create porosity / permeability

Groundwater flow direction